首页> 外文OA文献 >Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction
【2h】

Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction

机译:流体剪切应力通过硫酸乙酰肝素蛋白聚糖转导引发小鼠胚胎干细胞在自我更新环境中分化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shear stress is a ubiquitous environmental cue experienced by stem cells when they are being differentiated or expanded in perfusion cultures. However, its role in modulating self-renewing stem cell phenotypes is unclear, since shear is usually only studied in the context of cardiovascular differentiation. We used a multiplex microfluidic array, which overcomes the limitations of macroperfusion systems in shear application throughput and precision, to initiate a comprehensive, quantitative study of shear effects on self-renewing mouse embryonic stem cells (mESCs), where shear stresses varying by >1000 times (0.016–16 dyn/cm2) are applied simultaneously. When compared with static controls in the presence or absence of a saturated soluble environment (i.e., mESC-conditioned medium), we ascertained that flow-induced shear stress specifically up-regulates the epiblast marker Fgf5. Epiblast-state transition in mESCs involves heparan sulfate proteoglycans (HSPGs), which have also been shown to transduce shear stress in endothelial cells. By disrupting (with sulfation inhibitors and heparinase) and partially reconstituting (with heparin) HSPG function, we show that mESCs also mechanically sense shear stress via HSPGs to modulate Fgf5 expression. This study demonstrates that self-renewing mESCs possess the molecular machinery to sense shear stress and provides quantitative shear application benchmarks for future scalable stem cell culture systems.—Toh, Y.-C., Voldman, J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction.
机译:当干细胞在灌注培养中分化或扩增时,剪应力是一种普遍存在的环境提示。但是,其在调节自我更新干细胞表型中的作用尚不清楚,因为通常仅在心血管分化的背景下研究剪切作用。我们使用了多重微流控阵列,该系统克服了大灌注系统在剪切应用吞吐量和精度方面的局限性,从而开始了对自我更新的小鼠胚胎干细胞(mESC)剪切效应的全面,定量研究,其中剪切应力变化> 1000时间(0.016–16 dyn / cm2)同时应用。当与存在或不存在饱和可溶性环境(即mESC条件培养基)的静态对照进行比较时,我们确定了流动诱导的剪切应力会特异性上调成骨细胞标记Fgf5。 mESCs中的成胚细胞状态转变涉及硫酸乙酰肝素蛋白聚糖(HSPG),该蛋白也已被证明可转换内皮细胞的剪切应力。通过破坏(用硫酸化抑制剂和肝素酶)和部分重构(用肝素)HSPG功能,我们显示mESCs还通过HSPGs机械感知剪切应力,以调节Fgf5表达。这项研究表明自我更新的mESC具有检测剪切应力的分子机制,并为未来可扩展的干细胞培养系统提供了定量剪切应用基准。—Toh,Y.-C.,Voldman,J.流体剪切应力引发小鼠胚胎干。细胞通过硫酸乙酰肝素蛋白聚糖转导在自我更新的环境中分化。

著录项

  • 作者

    Toh, Yi-Chin; Voldman, Joel;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号